

Dear Colleagues!

Institute of Mathematics of the University of Georgia is pleased to invite you to the Online Tbilisi Analysis & PDE Seminar. The seminar is held bi-weekly on Mondays (at 16:00 GMT at 17:00 CET, at 20:00 local time in Tbilisi).

Talk on January 17, 2022

Speaker: Nikolai L. Vasilevski, Department of Mathematics, CINVESTAV, Mexico City, Mexico

https://www.math.cinvestav.mx/~nvasilev/

The title of the lecture: On analytic type function spaces and direct sum decomposition of $L_2(D, d\nu)$

Abstract: Let D be either the unit disk \mathbb{D} or \mathbb{C} , and let J be either [0,1) or \mathbb{R}_+ , so that $D = J \times \mathbb{T}$, where \mathbb{T} is the unit circle in \mathbb{C} . We set \mathcal{H} for any weighted Hilbert space $L_2(D, d\nu)$, with the probability measure $d\nu(z) = \omega(|z|)dA(z)$, where $dA(z) = \frac{1}{\pi}dxdy$, z = x + iy, and whose radial weight function $\omega: D \to \mathbb{R}_+$ is such that the linear span of the monomials $z^p \overline{z}^q$, for all $p, q \in \mathbb{Z}_+$, is dense in \mathcal{H} . Given any pair $(m,n) \in \mathbb{Z}_+ \setminus \{(0,0)\}$, we denote by $\mathcal{A}^{(m,n)}$ the subspace of \mathcal{H} , which consists of all

smooth functions f satisfying the equation $\frac{\partial^m}{\partial z^m} \frac{\partial^n}{\partial \overline{z}^n} f = 0$, and by $\mathcal{A}_k^{(m,n)}$ the subspace of \mathcal{H} , which consists of all smooth functions satisfying the equation $\left(\frac{\partial^m}{\partial z^m}\frac{\partial^n}{\partial \overline{z}^n}\right)^k f = 0.$

We call such functions (m, n)-analytic, and k-(m, n)-polyanalytic, respectively.

For particular values of (m, n), we have already known spaces of

- analytic functions $\mathcal{A} = \mathcal{A}^{(0,1)}$.

- k-polyanalytic functions $\mathcal{A}_k = \mathcal{A}^{(0,k)}$,
- anti-polyanalytic functions $\widetilde{\mathcal{A}} = \mathcal{A}^{(1,0)}$
- k-anti-polyanalytic functions $\widetilde{\mathcal{A}}_k = \mathcal{A}^{(k,0)}$,
- harmonic functions $H = A^{(1,1)}$,

- k-polyharmonic functions $\mathsf{H}_k = \mathcal{A}^{(k,k)}$.

We develop a unified approach to the characterization of all these analytic type function spaces and prove, in particular, the following result.

Given any predefined "analytic quality of functions", $(m,n) \in \mathbb{Z}_+ \setminus \{(0,0)\}$, the Hilbert space $L_2(D,d\nu)$ admits the following direct sum decomposition

$$L_2(D,d\nu) = \bigoplus_{k \in \mathbb{N}} \mathcal{A}_{(k)}^{(m,n)},$$

where $\mathcal{A}_{(k)}^{(m,n)} = \mathcal{A}_{k}^{(m,n)} \oplus \mathcal{A}_{k-1}^{(m,n)}$ are the spaces of the so-ealled true-k-(m, n)-polyanalytic functions.

Date: January 17, 2022 Time: 16:00 GMT (17:00 CET and 20:00 local time in Tbilisi)

How to join:

The seminar is organized on the **Cisco Webex Meetings**. If you are already registered, you do not need to register again. Otherwise, to join the seminar please send an e-mail to seminarim@ug.edu.ge or register here:

https://forms.gle/xfQJ9fg1uqe7CrZw6

You will then receive further information.

WEB of Seminar: https://www.ug.edu.ge/en/tbilisi-analysis-and-pde-seminars

Background picture credit: https://pngtree.com/freebackground/fresh-geometric-poster-background_1037586.html

Organizers:

- 1. R. Duduchava, Institute of Mathematics, University of Georgia, Tbilisi
- 2. E. Shargorodsky, Department of Mathematics, King's College London
- 3. G. Tephnadze, Institute of Mathematics, University of Georgia, Tbilisi

Secretary:

M. Tsaava, Institute of Mathematics, University of Georgia, Tbilisi

Technical support:

Z. Vashakidze, Institute of Mathematics, University of Georgia, Tbilisi

Background picture credit: https://pngtree.com/freebackground/fresh-geometric-poster-background_1037586.html