L5gomm3geml Mbogzgdlodg@o

3966090980b5 ©s5 39762¢m30980L U302

bgembspigmols #3oengdoor

SOGHMOHM sM5Jgeos60

30b3)-3396¢ MO0 3053600 bgedm{igMol

SL0bJMmMbeo seamm0mTdo

9936096900 s 39dbmermygdol bmerol
©MJAHMOOL 5350099079H0 bomolbob dmbodm3gdws FoMdmyqbowo bsd@mdol

LOEOLYOESEGOM Bo3bY

otelel el el
2022



LOEOLYOEHOEOM b5dOMI0 FglErEgdE0s LosMm39wwmL »boggdLoGEgEOL d93609MHgdOLS
39960980l b3mesdo.

Lodgb0gcm bgerddmasbgwrgdo:  sduod 053080, BgJs® Tgemsdy

3909 9JL39MGJO0: J0MMYO 0593060, GBS ®0bFoMsd], EgeEs JoMEbYs3d

OLYOEHOSG00L (335 F9AYOS .
doLsdsM0: MIOWOLO, LEJsOMNZ9E ML *Y6039OLOGEHYH0, JMBEZL 775, #519 99OGMMOS.
OoLYOAHOSE00L A53BMds Tg0dEgds LodsMm3zgEml 1bogzgMLoEGEYEHOL d0JdOM™Y35d0

LoEOLYOEHSEOM o369 I0yDegbs .

LoOLYOEGHEOM BsdFML 8E03560: Bs0s BsbY035930¢0



dobsgsemo

0930l 5B OEMOHMBS. dmm MM LYIE MBOM 5@ OEIM0 bgds 3356EHwMo
3003099396 900. JgLsdsdoLO® 5MLYdIEO LoliEJIYO0, OMIJL0E IRABIOMWos FoMGH030

603b3900L BoJBHMOHODBE0DY, bgds 5MIMLOBOMBM S Y(339W0. LYo LolEHdgdol
035¢BsB0bM F5g90m0 5G0OL RSA . 9L50580L5 90 MBsgmmbem LolEgdol 894abol sb
5MLgdMo LoliEgdgdol sbzgfol Logombo. sOLYdMBL FMms3z5¢0 bgwrdmfgMol Lolidgds,
9OMORIMSO O 565 Fbmerme.

36033MM55300 B6TGBEHWOO FoBsbo sHOL 3MmbBoIbE0sIEMGMIOL, mbsizgdgdol
d0@056MB0L, MEYMO™MIOL, 59939500033035300L s L0TYOMMBOL M HBOWBZgEYMRs. LmEg©
3603GMM553008 IHTMGO0m bgds MSWEOMMIOL, 5ML6J30Mgdwo izmdols s bgs
AL o3L0 OB5TsgdMOZ0 J39YdIOOL s©IMPYbs s 3693963 0s.

6596mddo 4obbo0s 3H0EMYMB0ME0 FgMEIdOL, BEBPIMEJd0, Jomo

09MOOI0 S 3M5JGH030 35dMmYgbgdol 360369 mds. 51939 HoMBmoygboos
36033MA6553099w0 JgmmEgdoL b3solbgs seram®domdo.

d9LHo30E05 WO EHYMSGIMST0 ImY35600 LESE09d0 O FoBbOEIMEOs Josmo
390092900. BE9GH09006 bsPWHE BBL, M3EG™A 560l 360369 M3560 sHHWO sSEYMHOMTYDOLS
Q@5 3500030 BomsbsM LoaMAoL olowgdol GgMbg3s. bBs@0gddo 1939 399650 BYdEOs

360000 565890MM39 30:03EHMLOLEJIJO0L 93)3900 ©s LYLEGHO FgOGHowgdo.

2016 b 458mg3996s LEsE0s 0dob Tglobgd, MM 3MM3MGs305 Google-ds, NASA-9 o
30bAmbmEOo 33093930L B0gaMLOEYEHJIOL SbmEos30sd (Universities Space Research Association-
USRA) 8c5{969L bgeo 05659d0::m8mdsbg 33956¢«mo D-Wave 36039069000
30om3Mmgdgm9b.

D-Wave 2X v5banglo 3356360 3Om3Eqlm®os, Mmdgeros 990303L 2048 30b0o3me
399003 (339660 2560b33900, 068306HT5300L T9bsbgzol MI30MgLo gOmgMEgdo 3356@ w6
3030193H96d0). 1152 3998030 3356w 3m330EJMHOL 53 IMYedo 250m0yggbgds



393003900l GgLolMIEGOIWIE. IOMMIIO ITIGJIOMO JMOOEH0 MOX IO DOl dogdol
bogM gL, gLodsTOLOE OBOYdS Q5MM39dOL LoBsGgs.

390 8996430900, ®MIGE0E SJGHOMEMS® 45dMm0yggbgds Lbgssalibzs bgwrdmfgmol
LobG9d90do, GMmyMEm0Ess Merkle-l bgerdm{gmolb Loli@gds, sB939 SJBHOMEmSE gdmoygbgds
Lbgoolbgs dmbsgdol aledgds dmbszgdms dsBsdo. oMlEMoE0s 2-Bg bobggbgdos
35600l 390 8mboigdoms d5Bsdo ( MySQL ), by berypt-ols obds®gdoom s3gdowo
35600 0bobgdes.

password
$2y$10$qQ2ut.N9jdt3iDIQ4QrOT..epVnHYgIVwu...
$2y$1059YquwHy7CZAe.eJ8U6MR6WuUVghdNaBR...

056589060™39 301039 JOOL 256300056905 fob JoOob, 29dMmEOlL MR sbowo,
953990 5 FM535¢0b53500560 3OMELMMYd0. SMLYIMBL 09360, 390D IRMIbYdYO
S5m0 d0, HMIGog 5MOL IO 3356EIMH0 3mI30EJMYdOL F9E)3900LY6, Jog™sad
5MHOL 5M595399EIM0.

LoMJBHMOHM EOLYOEHSE00L J0BIBO 5L OO LOLEHYIOL HoMmBmEygbs, MMIgEos
076905 80050 3356¢3M0 30330EHgM9d0L F9E93900U0 O 5853OMMS 153T>ME
9893000

393509600 Losbang. LoolYOEIEOM BsdMMAoL dg3B0gHIEO Losbargl FoMdmgbl
561900 30MBE-3396¢ M0 30:03EHMLOLEJIOL HIWO SEYMO0MT0, HMIOL EsbBsMYO0
LobGYTs 5MOL 565 TBMEME MLOROMbM, 5539 3936 LHMSBO s 9539JGIM0. B39l Jog
§omm960m0o seamMm0mTo 0ygbgdls 3MM39LMOMOL 553500901 FogMOE00L AoBEMYdOL

390MBOmM3MYES.

29L50900L 39bgMo30s: BMIS MBS 0gmb H >= 2 0doLomzol, G®ma dmbogl gGoo public
key - 0o 2H 03499963 0L bgandm{g®s. 5939 bwgds bgardm{g®ols s @osbidemgdol
39L©9gd5d0L 2969Gs0s: Xi, Yi, 0<=i<=2H . Xi sG>0l bgedmfjgmol golowgdo, bmwm Yi séol

LEHMOIOOL GolowgdO.



030b5m30L, HMI J0300Mmm FdMdJWOo 335600, LEFOMMS 45359MM0BM® 2 obs
339630(830¢0) 5 dmzsbobmm 39d06m9ds; ali, j] sGol bols 3356d9d0;

a[1,0]=h(a[0,0] || a[0,1]) .

bob 499435 bgds 3OHMEgLMEOOL 6535000l MMEIbMdsBY. 30300, Mol LoyMdg
G005 653500900L MoMgbMmdOL, 39bYbm FdMdYO 3356d900L AoFMMZEsl. 335, 33543
t M50 9bMmd0L B350 s d 3356d0. d 3396d900L MoMmEIbMdIL 3YmeRo t bs35gdOL
500©0bMdsbYg: d / t. d/t 33560900 933905 3939 65350090d0. FMdYo 3356d900 Bo0WYdS
(40) 258mLobyegdols Jobgz0m. bEgds d00gdgeo LodMsgeggdol 3mb3s@gboEos s 999yma
bgds domo t LOIMHZ3EYIOIP IYMGBS. U 3OIM(3gLO {MHIJ YOS BT, Bobsd 56 030090 bols
1wdgL. bob g3 s6ob public key .

39¢9™d06900L bgedmfgms: 0dolsmgzols, H™A dm3zsbobmo d93gmdobgdols bywdmfg®s,
39006900L L3195 9000 39b 960 oL BHMIBLFMEOToE0sL 1 BMIsdy. h(m) = hash. odobsmgob,
603 dmbgl 89@¢Ymd0obgdols bgedmfig®s, bsFomms Bgdoldogho ghmxgMowo Xany 4olowmgdol,
960X IO500 bgedmfgMol, MoK IO verification gobomgdols s yggars dgBmdgeo
339609000 godmygbgds.

Signature = (sig || any || Yany || authO ..., authH-1).

H9wdmfgMHob oalGMgds: 08oLsm30L, MM dmbgl bywdm{gmol sslidIMgds
L5FOOHMS JOHOKIMO byedmigmols 89dmfdgds verification dobomgdol IHISMGO0m. 03
9900bgz93590 0 25BbMM3090YdS bgardmfgmol sEslB¥IMYds, 3sdob begds yzgas af i, j]
9w9996@0L 2odmmaes auth , index , any , Yany g50mygbgdom. o bols gw9dqg ( root ) gdobggas
public-key - ls, 35806 bgedmg®s LimMos.

330930 30Bsbo. LoolgMEIE0M BdMMATo foMdmygbowo 33wg30l JoBsbos oligmo
3603GHMAM55300 5MmOomIol FoMmdmagbs, H™mIgwoE 8yMOO s 9B9JGHMMO 0d69gds
3396960 3330990l B0 IMIobsMy 3mEgbom®mo 89393700l JodsMo.

3936096900 53B0MMs© 3M85md9b 335630 3mI30YBHIMGO0L T9ddbsby. 3356¢E M
308301939690l 899d9ds OO 30BMO0L BoJEHMOOBG00L gobbmMEogmgds. dglsdsdols,
339636 300830vE 9690l 8993wgds RSA 5¢0gmMomdol godgbas, Gmdgubisi mqlimgolbmdoo



39360 36OHMAM535 04gbgdl. 399Dg sx3mdbydo 08O bywdmfgMgdo sGol RSA -1
S B9Mbs3035. 9 LobBHYIYd0 0Ygbgdl 398 B6EJ0gdL. 53 LolEJIgdOL oG ™MD
533000900 5G0ob 398 BMbJ30gd0L JmEwobosby.

Merkle-b 3005039960 5030 d90degds doBbgren 0465l MM LESEGH03MMO,
650396 0l 56 5GOL IMI0YIOMO 3OMEJLMEOOL 55350JOOL MoMmEIbmMdsbY. B39 dms35BMdM
56 0mAl, MHMIgero 0Ygbgdl 3MME3gLmOMOL 65350090L. 5 MOl HoMdmagbowo 53
5¢03MM0mIoL Jom9T9E03wIMH0 TMPIO S SEYMOOMIOL BLY3EM 30O. oo 9i9IEWIOMDdS
3LGHNOEYDS J0QIBMO TJRIEIO00.

596 339630 3nd30EH MO0 F90Ts390s 5dBH0O BsBsdos s Shor - obs
5¢0MM0mIoL EobsMgd0m F9vdE0500 JoMEH035® A5BHIOHME LobEHYIGOO, HMIXGOOE 0Ygbgdls
©03b3900L B5gEHMO0BoE0L, BI3M0 sOLYdIME0 LolEJIs bEYds IYE3IWO.

33930l m8099d3Hgd0. 33930l Md0YIEHJO0 SMOL SOLYIIEO JELOZMOO SERMOHOMNTJOO
Q5 51939 399Dg 95399196930 FoRMSEFOOL SEAMMOMTYOO.

339660 30830993 9MoL doge RSA, DSA s ECDSA 360033Hma L0900l god¢gbzol
3990092, B399 53M030 06EH9MbByE ImIBAsMGdgdOLmZ0L dglsdergdgeros 3904dbsls obgmo
Doy gbs, HM3 1sbsdxMmM3g 99393900l F0dsMm 5GBYOIE0 LOLEHYIJOO IYEIYLN0s.
06@&9mb9¢) 9mIbo9d@qdoLm30L 96 3m33560980LM30L OE30L YOHPOIHMO LyodgE™
39905350, MM 0BFMEOTs305 56 0gmlb bgerdobszomdo 35396M9d0bmz0l Fgodergds ogmls
R0D03MMO BoM0. ogowoms, USB dgbliogMqdol sdsengs 30600 ©o3Ie Bgogdo. 990degds
3035605Mm, HMI 335636 300830993 9MgdL dgmdwosm RSA , DSA s ECDSA 9560350
3939635 96 Bogm35mm, G 335660 3m330993H9M900 MLoMRJOML yobols
36033MM55305L. RSA, DSA @5 ECDSA 99356 0ol 30033 ™aMo1300L 393600 s 3603369crmg560

3wsbo:

1. 39906935%9 58393693100 3003EHMAMR0. 3¢90 MNEMO0 Togsomo sGob Merkle- s 399
public-key - B9 05539996900 LobiEds (1979), HmIgerog s®ob sRwydbgdveo Lamport
- ob s Diffie - ol 095%bY.

2. 30Dy 0553369090 3M03GHMYMRB0s. 3Esbo3MO Fsgowomo 6ol McEliece’s - ol

©53seemo Goppa 3mo public-key - bg @o3dbgdmwo LobEgds (1978).



3. Lattice - B9 ©513v)3dbgd0e00 3M03GHMAMT05. BoQ0E000, HMIYED(3 SdS0 Y39esbY
OO 0639M9glo godmof30s, 560l Hoffstein-Pipher-Silverman NTRU public-key - bg
55373693900 LobEgds (1998).

4. Secret-key 30033 MaM50305. 439eoHY 39630 dogoe0mo s®ol Daemen-Rijmen Rijndael
3og00(1998), H™MIgelsi 99dm3zargdom 34305 AES (Advanced Encryption Standard) .

d0Bbgmo 5oL, HMA gl o330l LOLEGHIYO0 ¥YdgAL JersliogME s 33956FHWG
30330193H9M90L. XIJO-XIOMO00 3965306 396 95(Y30E)9, OMAME FmsMmb Shor - ols
5EMMH0mJ0, HMIJGL0E SQOI0WSE 3530905 RSA -5, DSA -1 s ECDSA - b 6Hmdgeody
B99mm 5090w LobiEgasl. bbgs 33956¢MM0 SEam®omTo GOl Grover - ol seAM®0mTd0. 0l 56
5oL 0o LHMRO, MMAMMOE 5MOL Shor - ol SEyMOOMJo.

3657BHo3meo 36083690mds. oligMEo300l Bomargddo 399v)dsg39d9w0s
3OM03GMPMBOWO 5¢MH00T0, HMIOL 25dmygbgds glsadagdgeros 36odEo3sdo.
©OoLYME 30590 J009dvo F99YRJOOL 5Bs0Bol Logmdzguwbg y0bgds ™A, B39l Joge
39099953909900 5¢MOHOMI0L odMmm3ol LoBdsMy, G®mIguog 9i3w9dbgds Merkle-b 3¢05l03w96
5 MM0mAL, 5MHOL M53gbxgMHTg LHOST0 Lb3s sGBGdIME SEMOOTJIME FgsMGd0.

3309306 30M0m50 390923990. Fo03Mm©Ygbowo s5egm®0mdo Lsdmowgdsls 0dwg3s
LEOMEOE 0765l J9dmygbgd o MsBsdgEMM39 3OHMEILMEMOL MHYLEOLYdO, 3OMEILMGMOL

6535093b9 sgMbmdom MBOMBlgymz0emo 0gbsls 3sMomgum@mo godmmzwgdo, Mol
99009350533 bM 3090905 M39M530900L M3MEI6MBOLS s J9dMMZgdolL LHoMIMgdws©
Lo FoMOH™M O™l 360dz69wmazbs gdzocgds.

oLYOGHOE00L BoGRRgddo Fgbmes 9990 Lobols s3m3sbgdo:

1. 30033 Ma655300L 5MLYdMo LoIYEGHMOMEO S SBOTYGHOOMXO SWAMOHOMNIYOOL
sbosrobo.

2. ©E9LEPIOLMIOD SOLYIYWO JWSBOZYOO (FONME 25dMYgbgdo©O)
36033MA6M55300L SAMOHOMIJOOL 30LE-3350G IO SEMH000TYdMb FgsMgds.



3. 65dOFT0 256boEIM0s B0 5ERMOHOMTOL 53930L 3BIM39LO, HMIJoi 98Idbgds
Merkle-ls bgls 05 585300600 s@ HoMdmoyqbl 3o6M5egmr segm®omdl.

4. 256bmM 3095 300900 5EYMOOMIOL 9B9JGHMOMIOL sbseroBo s dolo
LoLHOSBOL (M39M530900L M3MEIbMBdOL) FgEsMYds SOBYIWMW SEIYMOHOMNTJIMb.

3909953909900 5¢MOHO0MToL 9R39JGHYIOMDdS ILEHMYds 9Ju3gM0d76EgdOL
9900939000. 39030, 8 653500560 3OMEgLMEOOL 990b3z93580 M3gM309d0L Mom©Ibmds

39930605 2.3 96, beagwm 16 6535000060 300 39bMEMOL J9d0mbgg35d0 M3geo30900L MromMmEgbmds
999306005 9 X96. 50603bMwo SOOIl sbTsMgd0m 6036365 F9d30Mgds
F0g3M5(305/39M053035300L OM3. 939008963 JOol 3OMEILA0, FodMmM3wgdoL HoMdmgdolsls 2
653500056 3OHME3gLMOHBY sHowo sEgMMomTo Jglmes 3,57 X9O NYBOM LGRS 306
30003 ME0. 3054303580 33b30 05 MBROM 9B bo35000L IJMbg 3OMEgLMMYd0, boss B39bL
9096 3009390 SEAMGO0MTOL g egdol LoBJsMg 046905 30093 RO LHOSRO.

©0olYOEH300L BAMYIBHNIOS s FEYEMds. 65dOMI0 TgYds: SBLEGMOJEHOLYD,
900mboerz0L96, 3 0530496, 37 J3907530L996, sL33BOLYD S Fodmygbgdmwo WoEIMsEMMOl
Loolsb. 65d6M™ATo Foedmygboeros 14 M5830379w0 Fodmbobwergds.

3963wl 3esL03MO0 5¢rMMO0MIOL, BOHIJEIWMEOO sEramB0mIoL s “ threads ” - gdby
058319969090 5¢rMmMH0mA0L M3JMHHG0YOOL IMZES. 2e7b0ZIHO 5¢g2AP00TOL LsFrgsered
botx9bo( Average costs ). 5930 ymgzgo 3356do Lodmermm xsddo 560l authentication path - ols
Bofoaro. ©o3dz5m, 359436 2H-h 96 3965(9Lsds30ls, Jot3bgbs) 3396d900 h Lodswerol bgdo.
0¥ 9300300 Y39 3356d8 ©3MY3009ds, Y39¢s F509B0L Logslw®o 0dbgds 2h+1 - 1
M3965305. ™A 935%50mm 93996905 2H+1 = 2N m396s309. ymzgero h (0<h <H)
L0TsEOLM3Z0UL, 439w LoBILOOL X SFJOOLSL, Lodryserme 33996905 2H = 2log(N)

15350 YOVIEM M39MSFOS.

5 MM0mdol 990L 498mmM3e0ol GoBs 9905 N 303¢00lysb, momm gmmerolmgol
33993 s €{0,...,N-1}. ymggaro s 303¢0l MU, authentication path-o s - 9o oo obm3zol
89920 0oL [AUTH] _i,i=0,....H-1.



ROSHHICPIHO 5¢r3H0000b M. 096 2o0mB0bsMg, H™A 235J3L R - 1
5mqgbMdoL by, LEGMOM YoTMMNZOMO LGLYIMO JOHMO 303oLm30L 0dbgds:

Tmax = Z(R'l) < ZS/S

1. Setl=0.
2. Output Authentication Path for leaf number 1.
3. Next Subtree For each j € {1,2, ..., S} for which EXISTS; is no longer needed, i.e, 1 = 0 (mod
2s):
a. Remove Pebbles in EXIST;
b. Rename tree DESIRE; as tree EXIST;.
c. Create new, empty tree DESIRE; (if 1 + 29 < 29).
4. Grow Subtrees For each j € {1,2, ..., s}: Grow tree DESIRE; by applying 2 units to the
modified treehash algorithm (unless DESIRE; is completed).

5. Increment | and loop back to step 2 (while 1 < 2H).

BOSIHSCPIH0 5¢rg2500000L bogeg(Space). 5060369900 seramomdologzols by Fotm
©oL3MMo dgblogMgdol Bmds 9230305 O35HOBM™ sMLYdWO J3gbgqdol, desired
J39b9900L s 9.§. tails - gdol sbTsMgdOm.

3093500 39990 33543L R 56Lgd o J3gbgqdo s R - 1 desired Jggbgado s ymggwro
95009560 903905 2s+1-2 pebbles - 296. ©s35EJO0m tail - Msb sbmEoMgdmwo desired Jggbg j > 1
©mbgbg(level ) 8goo3L s -j+1 pebbles - gdb. 5J9b godmdobaty, a39J3L:

SPACEmax < (2R—1) (21 -2) + R-2+s (R-2) (R-1)/2.

Y39@2%9 37900 F9Ip0Lom3g0L 33976900

SPACEmax< 2R 21+ SR/ 2.



6535098 Y9 ©s379969879¢0 5¢gH00IoL 396530980 H50200JbMBs. SHws

30003500 J0d©Y3MHMB0MO M39M530900L M5MEIBMBS sbogn s5eaMmEM0mTdo s s1g39

393500560 ™ 0l 3eslio3ME® 5eaMmMOomAL. J393mo sGOL dmyzsbowo bMHOEd0, Lywss

653969005 Mm3961530930L M YHMBS 3esl0ZMMO S HHHWO SEWRMHOMNTIOOLMZ0L, LBZoILLZS

50Mg6Md0L 65350930l Jobgzom.

b0 sEym®omdo 8 “ thread ” - 056 3GM3EqLMAT0

33960900l Gom©gbmds 9000093MMB0MO M3YMS(30900L MroMmEOIbMds
8 3
64 10
1024 130
4096 514
16384 2050
262144 30722
1048576 129026

3bo0 seym®omdo 16 “ thread ” - 056 3Gm3gLMOHT0

339609000 Grom©gbmds 9008936300 396530900l MMOIBMDS
8 3
64 7
1024 67




4096 259
16384 1027
262144 16387
1048576 65539
d39W0 5MMHOM30
33960900l Gom©gbmds 9000093MMB0MO M3YMHS(30900L MroMmEOIbMds
8 7
64 63
1024 1023
4096 4095
16384 16383
262144 262143
1048576 1048575

506036 Imbs39d9gdHg oYMHbMdOm 9830005 30300M™ SHoo

5 MMH000Jobm30lL 03EYZOMOOMO M3JM30900L MoMIBMBOL FodmMomM3EIGU0 BMEOTMS.

530350 t 5MH0L B5350gd0L MHMEIBMBS S N 5MOL 3356d900L MOMEIbMDS, Yodmzmzowmam O :

O=n/t+log2t/2, »yn=t, 95306 t=1t/2




300000

250000

200000

150000

100000

50000

803¢930MB000 M3YM130900

64

e 3 5b03vIHo

1024 4096

e 5b00(8 Threads)

16384 262144

e 5b5e00(16 Threads)

1048576



sli3365

565¢r0Bo. B396L d0gH 00YOIO SWRMM0MT0 F935IMIM 3esl03O SERMOOMAL.
AILAO PoBo0g0mo 0465 0ligm 3mI30EHIODY, OOl 3OIMEILMOLSE 399Bbs 2 Bs3swo.
39¢9md0bgd0l Loa®mdg 30 oym 128 dodo.

3Wb03MEO SEYMOOMIOL FYRq00:

1. 35Logdol 29696300l dmm: 0.049351 {odo
2. bgadmfg@ol mm: 0.0002425 {sdo
3. LGOIl Om: 0.0038651 {jsdo

Threads - 909 ©39db9do seaMmMomMdol Fggagdo:

1. 20boegdol 29696300l ®mm: 0.013841 {sdo
2. bgadmfig@ol dmm: 0.0002425 {sdo
3. ©LEGHMIdOL O™: 0.0038651 {jsdo

59 94b3960396& 06 258MIObIEIY, 09230305 365bMm, D HoMmdmoygbowo
5EMMH00T0 3EOBOZO SEYMOHOMIBY MO 3,57- X 96 LGsgO.

565¢0Bol G999, 393303005 35133650, nd B396 Boge 89393539890
5EMM0mT0 43590936 396G 5BJo6dsl 2oLoMgdol 9bgMsE0ol ML (Lbgs sMLgdw
5EMM000390m5b JgsMgdom ).

©093560090 L HoMmBMEYIBOMO SEIYMOHOMNTO SMOL 59dEYSEIEOO, oY
©©Y35609w0 3Gr39LMMJO0 G0l 50sb LGB0 S 0H530IMO. 50 630MMYdS bds

do05b LHGSGRO Fgddom. Fgbsdsdolo, G SEAMOOMT0E 5MOL EObsToEmO. oo oLy
533009005 3OMEILMOOL LOLHOORILS S B5350gOOL MOMEIBMBdSBY.



L5EOLYOEHSEOM 65Ol JOMHOMOO YOI GdJdO 5dMmd3994bgdE0s 909y
30035:3090d0:

1. Iavich M., Arakeliani. A. Implementation of Merkle and its analyses / Modern scientific researches

and innovations. 2017. Ne 6 URL: http://web.snauka.ru/issues/2017/06/83971

2. Iavich M., Gnatyuk S., Arakelian A., Iashvili G., Polishchuk Y., Prysiazhnyy D. (2021) Improved

Post-quantum Merkle Algorithm Based on Threads. In: Hu Z., Petoukhov S., Dychka I., He M. (eds)
Advances in Computer Science for Engineering and Education III. Advances in Intelligent Systems
and Computing, vol. 1247. Springer, Cham. https://doi.org/10.1007/978-3-030-55506-1_41. (WoS,

Scopus)

3. Improvement of Merkle Signature Scheme by Means of Optical Quantum Random Number
Generators; M. Iavich, A. Gagnidze, G. Iashvili, T. Okhrimenko, A. Arakelian, A. Fesenko; Advances
in Computer Science for Engineering and Education III (pp.440-453), 2020; DOI: 10.1007/978-3-030-
55506-1_40. (WoS, Scopus)

4. Post-Quantum Digital Signatures with Attenuated Pulse Generator; M. Iavich, R. Bocu, A.

Arakelian, G. Iashvili; IVUS-2020; http://ceur-ws.org/Vol-2698/; 2020. (Scopus)

5. Improvement of Implementation of Merkle Crypto System, A. Arakelian, O. Polihenko. Scientific

and practical cyber security journal; 2020



The University of Georgia

School of Science and Technology

Manuscript Copyright Protected

Arturo Arakelyan

Post-quantum digital signature’s asynchronous algorithm

Synopsis

of the thesis submitted in partial fulfillment for the Degree of Doctor of Informatics (PhD) in
Cryptography

Thilisi
2022



The doctoral dissertation has been written at the School of Science and Technology, The University of

Georgia.

Academic Supervisor: Maksim lavich, Bekar Meladze

Reviewers: George lashvili, Elza Djintcharadze, Lela Mirtskhulava

The defense of the dissertation will on be held on .
Venue: The University of Georgia, Room #519, Building IV, 77a, Kostava str, 0165, Thilisi, Georgia.

A copy of the dissertation is available at the library of the University of Georgia.

The synopsis was sent on .

Secretary of the Dissertation Board: Natia Manjikashvili



Introduction

Relevance of the topic. Quantum computers are becoming more and more popular.
Consequently, existing systems based on factorization of prime numbers become unsafe and
vulnerable. A clear example of such systems is the RSA. Accordingly, arises an issue of creating a
secure system or refining existing systems. There are many signature systems, one-time and not only,

that will be discussed in this paper.

Recently was published an article in which Google, NASA and the Universities Space
Research Association (USRA) signed a partnership with a manufacturer of quantum D-Wave

processors.

"D-Wave 2X" - the latest quantum processor containing 2048 physical qubits (quantum
discharges, the smallest units of information storage in a quantum computer). 1152 qubits are used in
this model of quantum computer to perform calculations. Each additional qubit doubles the search

space, thus increasing the computing speed.

Cryptography has a very rich and fascinating history. Its history dates back to 4000 years ago,
from the ancient Egyptians, and in the 20th century it played an important role in the course of both

world wars.

Cryptography is a science that studies the following methods: confidentiality (inability to
read certain information by a stranger), data integrity (inability to change information without a
trace), authentication and reliability. Initially, cryptography studied cryptographic methods, or the
conversion of plain text into encrypted text using a secret algorithm or "key". Traditional
cryptography includes symmetric cryptosystems in which plain text encryption and decryption are
performed using the same secret key. Modern cryptography also includes: asymmetric cryptosystems,
electronic signature systems, hash functions, key management, hidden information retrieval, and

quantum cryptography.



For example, hash functions that are actively used in various signature systems, such as the
Merkle’s signature system, are also actively used to encrypt various data in a database. For example,

the image below shows the password field in the database ("MySQL") is stored, which is hashed using

"bCI’ypt" .

password

$2y$10$qQ2ut.N9jdt3iDIQ4QrOT..epVnHYgIVwu...
$2y$1059YqwHy7CZAe.eJ8U6MR6WUVghdNaBR...

The development of processors is advancing, newer, more efficient and multi-thread
processors are producing. There are many hash-based algorithms that are resistant to attacks by

quantum computers but are ineffective.

The aim of the doctoral dissertation is to present a system that will be resistant to the attacks

of quantum computers and at the same time quite effective.

Scientific novelty. The scientific novelty of the dissertation is a new algorithm of the existing
post-quantum cryptosystem, with the help of which the system is not only safe, but also much faster

and more efficient. The algorithm we present uses CPU threads.

Key Generation: The size must be "H> = 2" to sign "2H" documents with a one "public key".
Here a signature and confirmation keys are generated: "Xi, Yi, 0 <=1 <= 2H". "Xi" is the signature key,

and "Yi" is the confirmation key.

In order to get the parent node, we need to combine 2 previous nodes (children) and hash

them; "A [i, j]" are nodes of the current tree:
“a[1,0]=h(a[0,0] || a[0,1]) ”.

Current tree is divided by the number of threads of the CPU. In a loop whose length is equal
to the number of threads, we calculate the parent nodes. Suppose we have a "t" thread and a "d" node.
Divide the number of "d" nodes by the number of "t" threads: "d / t". "D / t" nodes run in separate

threads. Parent nodes are obtained according to (1) image. The obtained "sets" are concatenated and



non

then their "t" "sets" are divided. This process continues until we get the root of the tree. The root of

the tree is the "public key".

Message Signing: To sign a message, we transform it to "n" size by hashing. "H (m) = hash", in
order to sign the message, you need to use any one-time "Xany" key, one-time signature, one-time

"verification" key and all neighboring nodes.
Signature = (sig || any || Yany || autho,..., auths1 ).

Signature confirmation: In order to confirm the signature, it is necessary to check the

signature once with the help of the verification key “a[i,j] 7, “auth ”, “index”, “any ”, “ Yany ”. If

the root of the tree matches the public-key, then the signature is correct.

The aim of the study. The aim of the study is to introduce a post-quantum system that will be

resistant to the attacks of quantum computers and at the same time quite effective.

Scientists are actively working to create quantum computers. Quantum computers will be
able to factorize large numbers. Consequently, quantum computers can break the "RSA" used by
many applications. Hash-based digital signatures are an alternative to RSA. These systems use hash

functions. The protection of these systems depends on the collision of hash functions.

Merkel's classical algorithm can be considered as static because it does not depend on the
number of processor streams. We offer an algorithm that uses processor streams. Here is the
mathematical model of this algorithm and the pseudo code of the algorithm. This algorithm has been

tested and its speed results are much better than the classic one.

As the development of these computers is in active phase and with the help of the "Shor"
algorithm they can easily hack systems that use number factorization, so many existing systems

become vulnerable.

Objects of the study. Research objects are existing classical algorithms as well as hash-based

systems.

After the RSA, DSA, and ECDSA hacked by a quantum computer, Internet users are likely to

conclude that cryptography is dead; That there is no hope that the data will be inaccessible to



hackers, and they will not be able to falsify this data; Many thoughts that a physical shield was
needed to securely store information so that the information would be inaccessible to the hacker. For
example, hide USB memory in a well-protected safe. However, once you understand the topic, you
will be convinced that it is too early to say that quantum computers can easily break RSA, DSA and
ECDSA, or that quantum computers have destroyed cryptography. There are many important classes

of cryptography behind RSA, DSA and ECDSA:

1. Hashing-based cryptography. A classic example is Merkel's hash-based public-key
system (1979), based on the idea of Lamport and Diffie.

2. Code-based cryptography. A classic example is McEliece’s hidden “Goppa” system
based on the public-key code (1978).

3. Lattice-based cryptography. An example that has probably aroused the greatest
interest is the Hoffstein-Pipher-Silverman NTRU public-key system (1998).

4. Quadratic based cryptography. One interesting example is Patarin’s HFE’s public-key
system (1996), which generalizes Matsumoto and Ima's proposition.

5. Secret-key cryptography. The best example is the Daemen - Rijmen Rijndael cipher
(1998), abbreviated AES (Advanced Encryption Standard).

It is believed that the systems described above can withstand classical and quantum
computers. So far no one was able to adapt Shor’s algorithm, which can break: RSA, DSA and ECDSA.

Another quantum algorithm is the Grover algorithm. It is not as fast as the Shor algorithm.

Practical importance. This dissertation is practical because its result is a system that can be
used in practice. Was developed a new algorithm based on the existing Merkle signature system, but
much more efficient and fast. The results of the new algorithm as well as comparisons with several

existing systems are given in the paper.

In the future, it is planned to upload the source code of this algorithm to the remote

repository, so that everyone can use this algorithm.



The main results of the research. Our new algorithm can use resources of modern processors,
based on threads it makes calculations, so the number of operations and the time of calculation is

significantly less. Within the dissertation were solved these tasks:

1. Analysis of current symmetrical and asymmetrical cryptographical algorithms.

2. Comparison of modern classical algorithms with post-quantum algorithms.

3. We've described the process of how the new algorithm, which is based on threads,
works.

4. We've compared the performance of the old algorithm with the new one.

The performance improvements of the new algorithm is confirmed by results of experiments.
For example, using the processor with 8 threads, the number of operations decreased 2.3 times
comparing to the old algorithm. If the processor is with 16 threads, the number of operations
decreased 9 times comparing to the old algorithm. Also in this algorithm is improved the time of the
ciphering/verifying. From this experiment, we can see that the presented algorithm is 3.57 times
faster than the classical algorithm. Consequently, this algorithm is also dynamic. Its speed depends on

the speed of the processor and the number of threads.

The structure and volume of the dissertation. The paper consists of: a review, a description of
the literature, an introduction, 3 chapters, 37 subsections, a conclusion and a list of used literature.

The paper presents 14 graphic images.

Counting operations of Merkel's classical algorithm, fractal algorithm and threads’ algorithm.
Average costs of the classical algorithm. Each node in the tree is ultimately part of the authentication
path. So, one of the most effective ways is to calculate the total cost of each node. Suppose we have
“2H-h” right (hence left) nodes in a “h” tall tree. If we count each node independently, the cost of all
of them will be "2h + 1 - 1" operation. To summarize we will have "2H + 1 = 2N" operation. For each
“h (0 <h <H)” height, when summing all the fees, we will have an average of “2H = 2log (N)”

mandatory operations.



The result calculation phase consists of an “N” cycle, for each leaf we have s € {0,..., N-1}.
During each "s" cycle, the result for the "authentication path" for the "s" leafis AUTH;,i = O, ..., H —

1.

Fractal algorithm time. Since we have an "R - 1" number of trees, the total calculation fee for

one cycle will be:
Tiax = 2(R—1) < ZS/S.

L. Set1=0.
2. Output Authentication Path for leaf number 1.
3. Next Subtree For each j € {1,2, ..., S} for which EXISTS; is no longer needed, i.e, 1 =
0 (mod 2):
a. Remove Pebbles in EXIST;.
b. Rename tree DESIRE; as tree EXIST;.
c. Create new, empty tree DESIRE; (if | + 29 < 29).
4. Grow Subtrees For each j € {1,2, ..., s}: Grow tree DESIRE; by applying 2 units to the
modified treehash algorithm (unless DESIRE; is completed).

5. Increment | and loop back to step 2 (while 1 < 2H).

Space of the fractal algorithm. The amount of space required for this algorithm can be

determined by the number of existing subfields, desired subfields, and with the help of "tails".

First, we have the existing "R" subfields and the "R - 1 desired" subfields and each of them
consists of "2s + 1 - 2" "pebbles". The "desired" subdivision associated with the additional "tail"

contains "s - j + 1" "pebbles" at the "j> 1" level. Therefore, we have:
SPACEmax < (2R-1) (221 -2)+R-2+s(R-2)(R-1)/2.
In the worst case we will have:

SPACEmax<2R 21+ SR/ 2.



Average costs of the algorithm based on threads. Now we can calculate the number of

sequential operations in the new algorithm and compare it to the classical algorithm. Below are the

tables showing the number of operations for the classic and new algorithms, according to the

different number of threads.

New algorithm run in the CPU with 8 threads

Quantity of nodes

Number of consecutive operations

8 3
64 10
1024 130
4096 514
16384 2050
262144 30722
1048576 129026

New algorithm run in the CPU with 16 threads

Quantity of nodes

Number of consecutive operations

8 3
64 7
1024 67
4096 259




16384 1027
262144 16387
1048576 65539

Old algorithm
Quantity of nodes Number of consecutive operations
8 7
64 63
1024 1023
4096 4095
16384 16383
262144 262143
1048576 1048575

Therefore, let us derive a formula for calculating the number of sequential operations for a

new algorithm. Suppose “t” is the number of threads and "n" is the number of nodes, calculate "O":

O=n/t+log2t/2, »yn=t thent=t/2



Consecutive operations

300000
250000
200000
150000
100000

50000

8 64 1024 4096 16384 262144 1048576

e C|assical === New(8 Threads) New(16 Threads)

Conclusion

Analysis. We compared new algorithm based on threads to the classical algorithm. The test

was performed on a computer whose processor has 2 threads. The message length was 128 bits.
Results of the classical algorithm:

1. Key generation time: 0.049351 seconds

2. Signature time: 0.0002425 seconds

3. Confirmation time: 0.0038651 seconds
Results of the algorithm based on threads:

1. Key generation time: 0.013841 seconds

2. Signature time: 0.0002425 seconds



3. Confirmation time: 0.0038651 seconds

From this experiment, we can see that the presented algorithm is 3.57 times faster than the classical

algorithm.

From the analysis, we can conclude that the algorithm we developed gives us good
acceleration during key generation (compared to other existing algorithms). This new algorithm is
relevant because today's CPUs are very fast and dynamic. Their development is happening at a very
fast pace. Consequently, this algorithm is also dynamic. Its speed depends on the speed of the

processor and the number of threads.



List of Publications:

1. Iavich M., Arakeliani. A. Implementation of Merkle and its analyses / Modern scientific researches

and innovations. 2017. Ne 6 URL: http://web.snauka.ru/issues/2017/06/83971

2. Iavich M., Gnatyuk S., Arakelian A., Iashvili G., Polishchuk Y., Prysiazhnyy D. (2021) Improved

Post-quantum Merkle Algorithm Based on Threads. In: Hu Z., Petoukhov S., Dychka I., He M. (eds)
Advances in Computer Science for Engineering and Education III. Advances in Intelligent Systems
and Computing, vol. 1247. Springer, Cham. https://doi.org/10.1007/978-3-030-55506-1_41. (WoS,

Scopus)

3. Improvement of Merkle Signature Scheme by Means of Optical Quantum Random Number
Generators; M. Iavich, A. Gagnidze, G. Iashvili, T. Okhrimenko, A. Arakelian, A. Fesenko; Advances
in Computer Science for Engineering and Education III (pp.440-453), 2020; DOI: 10.1007/978-3-030-
55506-1_40. (WoS, Scopus)

4. Post-Quantum Digital Signatures with Attenuated Pulse Generator; M. lavich, R. Bocu, A.

Arakelian, G. Iashvili; IVUS-2020; http://ceur-ws.org/Vol-2698/; 2020. (Scopus)

5. Improvement of Implementation of Merkle Crypto System, A. Arakelian, O. Polihenko. Scientific

and practical cyber security journal; 2020



